159 research outputs found

    Biomarkers of Aryl-hydrocarbon Receptor Activity in Gulf Killifish (Fundulus grandis) From Northern Gulf of Mexico Marshes Following the Deepwater Horizon Oil Spill

    Get PDF
    © 2017, Springer Science+Business Media New York. Following the Deepwater Horizon oil spill, shorelines throughout the Barataria Basin of the northern Gulf of Mexico in Louisiana were heavily oiled for months with Macondo-252 oil, potentially impacting estuarine species. The Gulf killifish (Fundulus grandis) has been identified as a sentinel species for the study of site-specific effects of crude oil contamination on biological function. In November and December 2010, 4–5 months after the Macondo well was plugged and new oil was no longer spilling into the Gulf waters, Gulf killifish were collected across the Barataria Basin from 14 sites with varying degrees of oiling. Fish collected from oiled sites exhibited biological indications of exposure to oil, including increase in cytochrome P4501A (CYP1A) mRNA transcript and protein abundances in liver tissues. Immunohistochemistry revealed increases in gill, head kidney, and intestinal CYP1A protein at heavily oiled sites. Intestinal CYP1A protein was a sensitive indicator of exposure, indicating that intestinal tissue plays a key role in biotransformation of AHR ligands and that ingestion is a probable route of exposure, warranting additional consideration in future studies

    Composite boson dominance in many-fermion systems

    Full text link
    I recently proposed a method of bosonization based on the use of coherent states of fermion composites, whose validity was restricted to smooth structure functions. In the present paper I remove this limitation and derive results which hold for arbitrary interactions and structure functions. The method respects all symmetries and in particular fermion number conservation. It reproduces exactly the results of the pairing model of atomic nuclei and of the BCS model of superconductivity in the number conserving form of the quasi-chemical equilibrium theory.Comment: 5 pages, no figur

    Duality in the Color Flavor Locked Spectrum

    Get PDF
    We analyze the spectrum of the massive states for the color flavor locked phase (CFL) of QCD. We show that the vector mesons have a mass of the order of the color superconductive gap Δ\Delta. We also see that the excitations associated with the solitonic sector of the CFL low energy theory have a mass proportional to Fπ2/ΔF^2_{\pi}/\Delta and hence are expected to play no role for the physics of the CFL phase for large chemical potential. Another interesting point is that the product of the soliton mass and the vector meson mass is independent of the gap. We interpret this behavior as a form of electromagnetic duality in the sense of Montonen and Olive. Our approach for determining the properties of the massive states is non-perturbative in nature and can be applied to any theory with multiple scales.Comment: RevTeX4, 4 page

    Color Superconductivity in Asymmetric Matter

    Get PDF
    The influence of different chemical potential for different flavors on color superconductivity is analyzed. It is found that there is a first order transition as the asymmetry grows. This transition proceeds through the formation of bubbles of low density, flavor asymmetric normal phase inside a high density, superconducting phase with a gap {\it larger} than the one found in the symmetric case. For small fixed asymmetries the system is normal at low densities and superconducting only above some critical density. For larger asymmetries the two massless quarks system stays in the mixed state for arbitrarily high densities.Comment: 8 pages, 2 figure

    Superconductivity from perturbative one-gluon exchange in high density quark matter

    Get PDF
    We study color superconductivity in QCD at asymptotically large chemical potential. In this limit, pairing is dominated by perturbative one-gluon exchange. We derive the Eliashberg equation for the pairing gap and solve this equation numerically. Taking into account both magnetic and electric gluon exchanges, we find Δg5exp(c/g)\Delta\sim g^{-5}\exp(-c/g) with c=3π2/2c=3\pi^2/\sqrt{2}, verifying a recent result by Son. For chemical potentials that are of physical interest, μ<1\mu< 1 GeV, the calculation ceases to be reliable quantitatively, but our results suggest that the gap can be as large as 100 MeV.Comment: 19 pages, 6 figures. I accidentally replaced the paper with an outdated version. This version has typos corrected and will appear in PR

    Charged kaon condensation in high density quark matter

    Full text link
    We show that at asymptotically high densities the ``color-flavor-locked + neutral kaon condensate'' phase of QCD develops a {\it charged} kaon condensate through the Coleman-Weinberg mechanism. At densities achievable in neutron stars a charged kaon condensate forms only for some (natural) values of the low energy constants describing the low-lying excitations of the ground state.Comment: 11 pages, 3 figures, new reference adde

    Thermodynamics of the 3-flavor NJL model : chiral symmetry breaking and color superconductivity

    Full text link
    Employing an extended three flavor version of the NJL model we discuss in detail the phase diagram of quark matter. The presence of quark as well as of diquark condensates gives raise to a rich structure of the phase diagram. We study in detail the chiral phase transition and the color superconductivity as well as color flavor locking as a function of the temperature and chemical potentials of the system.Comment: 27 pages, 7 figure

    Thermodynamics of two-colour QCD and the Nambu Jona-Lasinio model

    Full text link
    We investigate two-flavour and two-colour QCD at finite temperature and chemical potential in comparison with a corresponding Nambu and Jona-Lasinio model. By minimizing the thermodynamic potential of the system, we confirm that a second order phase transition occurs at a value of the chemical potential equal to half the mass of the chiral Goldstone mode. For chemical potentials beyond this value the scalar diquarks undergo Bose condensation and the diquark condensate is nonzero. We evaluate the behaviour of the chiral condensate, the diquark condensate, the baryon charge density and the masses of scalar diquark, antidiquark and pion, as functions of the chemical potential. Very good agreement is found with lattice QCD (N_c=2) results. We also compare with a model based on leading-order chiral effective field theory.Comment: 24 pages, 12 figure

    Charged and superconducting vortices in dense quark matter

    Full text link
    Quark matter at astrophysical densities may contain stable vortices due to the spontaneous breaking of hypercharge symmetry by kaon condensation. We argue that these vortices could be both charged and electrically superconducting. Current carrying loops (vortons) could be long lived and play a role in the magnetic and transport properties of this matter. We provide a scenario for vorton formation in protoneutron stars.Comment: Replaced with the published version. A typographical error in Eq. 2 is correcte

    Dense quark matter in compact stars

    Full text link
    The densest predicted state of matter is colour-superconducting quark matter, in which quarks near the Fermi surface form a condensate of Cooper pairs. This form of matter may well exist in the core of compact stars, and the search for signatures of its presence is an ongoing enterprise. Using a bag model of quark matter, I discuss the effects of colour superconductivity on the mass-radius relationship of compact stars, showing that colour superconducting quark matter can occur in compact stars at values of the bag constant where ordinary quark matter would not be allowed. The resultant ``hybrid'' stars with colour superconducting quark matter interior and nuclear matter surface have masses in the range 1.3-1.6 Msolar and radii 8-11 km. Once perturbative corrections are included, quark matter can show a mass-radius relationship very similar to that of nuclear matter, and the mass of a hybrid star can reach 1.8 \Msolar.Comment: 11 pages, for proceedings of SQM 2003 conference; references added, abstract reworde
    corecore